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Entanglement dynamics in one-dimensional quantum cellular automata
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Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in
a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit
gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum
computation based on quantum cellular autont@@A) requires only homogeneous local interactions that can
be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal
physical requirements for the construction of unitary QCA in a one-dimensional Ising spin chain and demon-
strate optimal pulse sequences for information transport and entanglement distribution. We also introduce the
theory of nonunitary QCA and show by example that nonunitary rules can generate environment assisted
entanglement.
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[. INTRODUCTION cedure for implementing the local rules. For a two-state CA,
which will be the focus of this paper, each cell in a quantum
Much progress has been made recently in developing aeellular automatdQCA) corresponds to a qubit that can be
chitectures that can support quantum-information processing a superposition of staté®) and|1), and the local rule is
(QIP). The key result on the universality of quantum com-carried out via a unitary gate operation on each neighbor-
puters (QC) is that given the ability to implement single- hood. The essential new feature in a QCA that makes it dis-
qubit and two-qubit gates in a network of connected qubitdinct from its classical counterpart is that nonlocal correla-
any computation or quantum simulation can be implementedions can develop between cells resulting in the spread of
However, some systems are better adapted to implement ceaatanglement throughout the system. This property of QCA
tain QIP tasks than others. In particular, lattice based systemill be of central importance in this paper.
with regularly arranged qubits interacting with nearest neigh- Our motivation for studying QCA is to explore the power
bors such as a neutral atom optical lattice, quantum-dot aef low computational depth circuits applied in uniform
rays, and phosphorus embedded silicon offer several advaacross a system to produce complex quantum dynamics. This
tages in terms of reconfigurability and scalability. Foris in marked contrast to the typical QC approach, where a
example, optical lattices with nearest-neighbor tunnelingcomplex sequence of logic gates acting on distributed qubits
couplings have been shown to be a promising platform tdn the computer is carried out in a serial fashion in order to
simulate many-body Hamiltoniah4]. Generally, lattices are produce the desired output of a specific computation. Most
well suited to perform parallel computation protocols such aprevious work on QCA has focused on mapping such sys-
entanglement distribution2] and entanglement swapping tems to the QC circuit mod¢b,7]. Additionally, there have
[3]. been investigations of quantum lattice-g&3.G) automata
The natural facility of these systems invites study of otherfor simulations of the Dirac equation in one-dimens{db)
models of computation that take advantage of the lattice af:8] and for topological computatiof®]. Recently, there was
chitecture. Perhaps the most relevant computational model ian experimental realization in liquid state nuclear magnetic
classical systems is a cellular automaton. The essential ideasonance of a QLG algorithm to solve the 1D diffusion
behind cellular automatéCA) is to make use of simple local equation[10]. We propose using 1D QCA to explore com-
rules uniformly applied across a lattice of cells to generatglex quantum correlations generated by simple rules applied
complex dynamics. Depending on the initial state of the sysever small neighborhoods. Characterizing multiparticle en-
tem and the underlying rule, long-range spatial and temporahnglement is a field of active research both for its potential
correlations can develop resulting in complex behavior. Clastise in QIP and in the study of nonlocality in physics. QCA
sical CA can simulate a wide range of complex physicalcan offer a unique approach to study the raw computational
phenomena including fluid dynamics, nonlinear diffusion,effort needed to generate such entanglement.
percolation, and phase transitions in many-body sysfdis From an experimental standpoint, a QCA has a significant
Formally, a CA is termed complex if it evolves in a manneradvantage over a QC because individual qubits in the lattice
that in some sense is computationally irreducible, meaning itlo not need to be separately addressed, since uniform rules
cannot be predicted with a compactly written equaf®hA  are applied in parallel across the lattice. In such an imple-
number of CA rules have been shown to be computationallynentation, applying uniform fields over the entire system
universal, in the sense that they can emulate a universal Tuhelps to eliminate error resulting from cross talk on neigh-
ing maching/4]. boring qubits due to imperfectly aligned control fields. Some
The extension of the cellular automaton concept to quanspecific physical systems have been proposed as candidates
tum systems is fairly straightforward, though as we will for QCA including quantum-dot arrayd1] and endohedral
show, requires a slight modification of the classical CA pro-fullerenes[12]. Throughout the development of the general
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QCA formalism in this paper, we provide specific examples We show that any BQCA can be simulated with a lattice
of possible experimental implementations in order to emphaef even order constructed with an alternating array of two
size the relevance of the QCA approach to present day teclilistinguishable specieABABAB. .. that are globally ad-
nologies. dressable and interact via the Ising interaction. In deriving
In Sec. Il we introduce the formalism for QCA and show the construction of QCA rules we initially assume periodic
how to construct arbitrary three-cell neighborhood rules ushoundary conditionsn(+j=j). The simulation is shown to
ing homogeneous pairwise interactions and single-qubibe easily adapted to a lattice with fixed boundaries.
gates. We show how to transport quantum information with The general pairwise interaction Hamiltonian across a 1D
QCAin Sec. lll and demonstrate optimal sequences to swalattice is
two distant quantum states and to prepare three types of en-
tangled states. In Sec. IV we explore general properties of : . .
entgnglement dynamics with QC/I-J\. Theg dynami?:s 21‘ multi- H(t)= ZO 2_0 g, sl ™, 2
spin entanglement are measured by a function linearly re- 170 @h=

lated to the purity of the single qubits averaged over thgynere the Pauli operators are labeled,} ={1,0,, 0,05}
!attlce. Thl_s measure has the gdvantage of belng observab;lﬁ]dgja B(t) are, possibly time-dependent, coupling strengths
in a physical system supporting the QCA architecture. IrKfi=1)y. It is straightforward to show that in order for the

Sec. V we extend the theory to open systems and dgmo Hamiltonian to commute over all nearest-neighbor pairs with
strate how more general nonunitary rules can be imple

: . . IE>eriodic boundary conditions, it is restricted to the form
mented in the QCA paradigm using measurement and quan-
tum feedback. It is shown that for a particular mixing of a n-1 _ . n—1 .
nonunitary rule with a unitary rule, entanglement is gener- H ()=, gJ(t)gJF@UJFfle > h"(t)a];_, ©)
ated across a spin chain where there is none for purely uni- j=0 ] it1j=0 i
tary evolution. This is an example of environment assisted S
entanglement generation. Finally, we present conclusions an(dherech;jEcr- r; defines the local Bloch vector at siteWe

open questions in Sec. VI. identify the local basis of each qubit along this Bloch vector

meaning ajzzo‘;_. The second sum in EqQ3) refers to

n-1 3

Il. FORMALISM single-qubit free Hamiltonians. Note that in order to satisfy
. _ the periodic boundary conditions,must be even.
A. Simulating QCA rules The system dynamics can be controlled in a nontrivial

Consider a 1D array afi lattice sites occupied by qubits Way with limited addressability by assuming a 1D lattice
ordered O ton—1. We define a radius-QCA as one that constructed two species of qubidsand B arranged in anti-
changes the state of a qubit at sitdependent on the states ferromagnetic order. Here the species may have distinguish-
of the qubits in the neighborhodd—r,j+r]. Given a sys- able two-level energy spacings!=h*®) for j even(odd),
tem with nearest-neighbor interactions, the simplest unitaryn€aning the species are addressable in frequency allowing

QCA rule hasr=1 describing a unitary operator applied €ven or odd ordered qubits to interact in parallel with an
over a three-cell neighborhoogl€1,j,j+1): external field. The two species could also correspond to dis-

joint two-dimensional subspaces of the same four-dimension
M (Ugg,Ug1,U1g,U17) =|00){00 ® Ugo+ |01)(01| ® Ug;+|10) system. In either case, a general control Hamiltonian that

performs single-qubit rotations on the two species is written
X(10®Uqo+|11)(1Y® U4, (1) as

n/2—1 n/2—1
where |ab)({ab|®u,, means update the qubit at sjtevith Ho()=0at)- > o2+ 0gt)- >, o2+ (4)
the unitaryu,,, if the qubit at sitej — 1 is in statga) and the j=0 j=0
qubit at sitej +1 is in state|b). In classical CA the local o ] ]
update ruleM can be applied in parallel to all cells. To do so The total Hamiltonian acting on the system k=H,(t)
requires that a separate register store the current state of tieHc(t). For simplicity, we assume an isotropic pairwise
lattice so the previous state of the neighbors is known beforéiteractiong!(t) =g(t) corresponding to the Ising interac-
the cells are updated in parallel. For instance, radius-one CHon, and transfornH to the appropriate rotating frame so
rules could be implemented by copying the current statethat the total Hamiltonian becomes
updating the even ordered cells on the original and the odd no1
ordered cells on the copy, and splicing the updated cells to- Ve s s P i1 s
gether. By the no cloning theorelh3], nonorthogonal quan- HY()=H(t)+ HC(t)_g(t)go oy @ 0y "+ He(b).
tum states cannot be copied so this is not possible for QCA. (5)
However, the update can be divided into two stages: first
update all the even qubits with rul, next update all odd Discrete time dynamics describing cellular automata can be
qubits. This rule is denoted as a Block partitioned QCAimplemented with continuous dynamics by first evolving the
(BQCA) and guarantees that at each stage the operators cosystem with the interaction Hamiltonian followed by evolu-
mute and thus can be implemented in pardhg! tion by the control that performs simultaneous single-qubit
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gates on either or both species. This can be realized with a (n—2)12 _ _ _ _

fixed Ising interaction punctuated by *hard” control pulses Hagyn= 2 [g'(Dod @02 T+ g%t ol Tt ol 77,

as is done in NMR pulse sequencifitf], or the physical =0

system may allow the pairwise couplings to be turned off ©

during the single-qubit gates. In any case, because the inter- o )

action Hamiltonian commutes with itself at all times, the This asymmetry can be built into the system as is suggested,

unitary corresponding to coupled evolution can be written ad0r instance, in proposals to implement quantum computa-

U(t)=exd —iftH/ (t)dt] and the single-qubit gates are gen- tion in optical latticeq 15]. Here atoms are trapped in a 3D

erated byH .. periodic potential created by standing waves of interfering
The simplest nontrivial BQCA rule obtainable in the two !aS€r béams and prepared with one atom per potential well.

species architecture is described by the following gate seAn antiferromagnetic ordering of atomic species can be cre-

quence: ated along one dimension, and by appropriate tuning of the
laser parameters, wells can be joined along this dimension
M (L,u,u,u?)=e " (omy [ y/(2g)])e 7z ("2)om, such that each atom interacts with its left or right neighbor.

(6) By choosing different interaction strengttisr timeg be-
o tween the center-left and right neighbds,s, ,can be simu-

where u=¢€'"’n is an arbitrary element of S@) written |ated.
as a rotation about the Bloch Vectoi:(sin 6cosg, Given the ability to implementi ;. ,, the following rule

sin@cosg,cosé) and m=(sind/2 cosg,sindi2 cosp,cossl  can be generated:
2). The evolution time in brackets, viaJ(t=[x]), means _ i , i
add the appropriate multiple of/|g| to the quantityx to M(Lu tu1)=e '"7my([t])e'(™7m,  (10)
make it positive. Henceforth, we assumgz 0. All qubits of
speciesA(B) are updated by the ruld”(®) when the single- where the time and couplings satisfy
gubit gates act on that species. A single step of the BQCA is
defined as the sequenc=M”"MB, which updates all t
cells, and the BQCA rule iteratectimes on the initial state f [g(t)—g?(t)]dt=1,
|4(0)) generates the statg(t))=[M]'[(0)). 0
The particular rule, Eq(6), is left/right symmetric with
the interpretation that the center qubit is rotated by an t )
amount proportional to the sum of the qubit values of the fo[g ()+9%(1)]dt=0 (mod 27 ), 1D
neighbors. Note thaM”(u?,u,u,1)=o02M”(1,u,u,u?) o2,

Another elementary rule is .-
and (u,m,n) are as above. A general QCA rule can be con-

M(1,u,u,1)=—e ("2om e~ 1(T2oyy ([ y/(4g)]) structed from the above elementary rules:

X ei(ﬂ/Z* y/2)o-zei (77/4)¢7yU ([ _ 3,”_/(49)])

X ei (377/2)0'287 i (77/4)a'zei (‘y/2)¢Ty

M (Ugg,Uos,Us0,U11)
=M(1,x 1 x,HM(Lx,x, )M (v3,v,v,1)

_ i(7/8) oy i (7/4) 0yl (14— yI2) o
XU([—ml(49)])e (" ve!(mHoze " XM(1,w,w,1)M(1,u,u,u?), (12

X ei(w/Z)azei(ﬂ'M)o‘yU ([ ,y/(4g)])e—i(y/2)az]

g (72 (7) Wh(iga v= uégz,xz VUiglor ;W= U501/2U01U1_11/.2' a'f'd u

=uy; . Amaximum of 11 sequences of left/right shifts punc-
tuated by single-qubit gates are sufficient to implement an
arbitrary three-cell BQCA ruleéM, although it is uncertain
whether this is optimal.

The present construction dfl(ugg,Ugq,Uq0,U17) With

where the unitary and the Bloch vectorsﬁg rﬁ) are defined
as above. Combining rulg$) and (7) we can construct all
symmetric QCA rules:

M (Ugg,Ug1=U10,U17) Ujj € SU2) is only a sul_nget of the most general rule
having  three additional relative phases,
=M(v?v,0,DM(Lw,w,1)M(L,u,u,u?), M (Ugo, € ?1ug;, €' %2u;0,€'%3u,;). One relative phase can be

(8 fixed by applying & rotation,e'(“27z, to the neighboring
qubits after an update. Also, for each unitarye'”’n the
wherev =ul? u=ul? andw=uy2uyu;%. Amaximum  replacementy— y+ rr introduces a sign change. A second
of six pairwise interactiondJ interspersed by single-qubit relative phase is fixed by applying different controlled phase
gates is sufficient to simulate the symmetric rules. gates between a qubit and each neighlasris possible with
Asymmetric rules can be constructed if the Ising interac-the interactiorH s, ). Generating a third relative phase re-

tion is allowed to have different coupling strengths betweeruires a direct interaction between left and right neighbors,
left-center and center-right pairs. The appropriate Hamilnot possible in the 1D architecture with only nearest-
tonian is neighbor connectivity and two species addressability.
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B. Boundary conditions defined as the number of 0’s minus the number of 1's in the

In the above treatment we have assumed periodic bound!€ighborhood of each qubit, therefofes{—2,0,2} inside

ary conditions, in which case the BQCA rules can be imple{he lattice andf e {—1,1; at the boundaries. BQCA rules
mented uniformly with only global addressability of two spe- provide anuexpucn colnstrucn_on qf thes_e umtarlans, viz., the
cies. In practice, a system coupled by the Ising interactiorf€duences;$S™, acting on interior SpINS 1S exactly simu-
with periodic boundaries could be realized by a custom delated by the symmetric BQCA ruléd*(u,v,v,w). In this

signed ring molecule with alternating atomic species or Ioerproposal the boundary spins need to be addressable in order

haps with trapped atoms in a ring-type cavity. In most ex 10 load information into the lattice, but the only operations

perimental situations it will be easier to construct a linear"eeded are the bit flipss™ ;. When the entire lattice is
system with boundaries. Consider an open 1D spin chaifoupled via the Ising interaction, this is achievable by dy-
labeled from left to right by the integers 0 -1, where as namlcally.decouplmg the boundary spms_from the rest pf the
aboven is assumed even. One can simulate evolution wheré@ttice using standard refocusing techniquéd]. Explicit
each cell is updated according to neighborhood values b§u!S€ Sequences to perform computation with endohedral
introducing fictitious boundaries on the left and right ends!Ull€Tenes ina QCA architecture have been recently proposed

with fixed valuesX| re{0,1}. This is accomplished by ap- in Ref. [12]

. ; i . In the second protocdl16] it is not necessary to apply
Eﬁgﬂng‘t;ngiznﬁgaiggIir((qtu)b::] ?ﬁ;ezbfvethﬁjl:gdlszo?fathﬁnitarians that depend on the total field value, however, it is

dati q ) W assumed that the Hamiltonian between left/center neighbors,
sequence updating even orderet) species, append(t) A8 can pe turned “off” while the center/right Hamiltonian

with e~ 1(-D™0t2 and for a sequence updating odd ordered45A is turned “on,” and vice versa. This is akin to the physi-
(B) species, append Witb—i(—l)kRgtoQ’ll In this way, ad- cal requirement for asymmetric BQCA rules and may be
dressability at the end®r at least the ability to introduce more difficult to engineer in a given system.

energy shifts at the engss sufficient to simulate BQCA  The ability to map BQCA to Benjamin’s model of com-

rules over 1D systems with boundaries. putation resolves a question about whether BQCA are uni-
versal with respect to the ability to efficiently simulate other
C. Universality quantum cellular automata. Watrol& has shown that 1D-

partitioned QCA can be simulated by a quantum Turing ma-

We have identified a finite set of rules to construct a clasgpine (QTM) with only linear slowdown. 1D-partitioned
of radius-1, two-state BQCA. We now discuss some iSSuegyca are a restricted class of 1D-QCA in which each cell is
regarding the universality of this class of quantum cellularyartitioned into three subcells and the rule updates the cells
automata. By u_nlvers_allty we refer to the ability to emulateby permuting subcells of neighboring cells and operating on
other computations, in particular, other QCA and quantumpe new cells in parallel with quasilocal unitary operations.
computers, in an efficient manner. A distinguishing feature of,3n pam[17] extended this result to prove that quantum gate
computation with classical cellular automata is that CA have.g|jular automataQGCA) can simulate any unitary QCA
minimal tlme_ complexity in that. the same rgle is applied to it only a polynomial slowdown. QGCA evolve by a re-
the data register at each iteration. This is in contrast to th%eated sequence of two steps: one step acts to permute the
conventional computers that use a complex sequence of 10gjgysis states within a certain neighborhood and the second
gates over the period of computation. It has been shown thage, applies parallel quasilocal gates over the neighborhood.
a radius-1, two-state classical CA rule, designated rule 11Qyot a)| of the quasilocal gates in the QGCA model can be
is universal in the sense that by appropriate choice of initia|mplemented with pairwise interactions and two species ad-
state it can emulate any other CA as well as a Turing magyessability. However, one can use Benjamin’s protocols to
chine[4]. It should be emphasized that this rule updates alkpoyy that with a properly prepared initial state, a sequence of
cells synchronously. It is not obvious that by appropriatenomogeneous update rules can simulate the QGCA model
choice of initial state, a single BQCA rule would be universal,yith only a linear cost in space and time resources. Because

in the same way. It can be shown, however, that a sequenggoCa rules are sufficient to implement Benjamin's model,
of rules can simulate a quantum computer with only ImearBQCA are also universal in this respect.

cost in space and time resources. This may violate the spirit
of using a single rule to generate complex dynamics but
demonstrates that the underlying physical architecture for
QCA supports universal computation. The ability to simulate The discrete time process corresponding to QCA evolu-
a QC follows from the work of Benjamin who has shown tion is a useful way to study information flow in quantum
[16,7] that an open 1D lattice composed of an alternatingsystems. For classical CA the maximum speed of informa-
array of two species of qubits can be used for quantum comtion flow, ¢y, IS 1 cell per update, which defines a light
putation. The only architectural requirements are global adeone for information propagation. This can be realized, for
dressability of the species and addressable boundaries. Higstance, by beginning in the state 0. 010 . . . 0 anevolv-
proposes two protocols with different physical assumptionsing with Wolfram’s rule 2544]. This rule updates the center
The first protocol[7] assumes that unitariar®' can be cell in a three-cell neighborhood, mapping each cell to a 1
implemented in parallel, meaning “apply the unitamyto  unless its left and right neighbors are in state 0,0. Evolving
speciesS if the field value is equal td.” The field value is  the initial state will cause the string of 1’s to grow by one

IIl. INFORMATION TRANSPORT
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probability P;(p;) reduced entropy S(p;) probability P;(p;) reduced entropy S(p;)
: : h -'I-I'_-_
[ (]
| -
space 3 space = space - space a
FIG. 1. Transporting a quantum state over ran 14 cell 1D FIG. 2. Swapping the states of cells at the boundaries af an
lattice via BQCA evolution by the rule =14 cell lattice through intermediary cells initialized [@).

M (1,e " (m2ox @=i(m2)ox @=imoy) gpace-time diagrams are shown

with cell number on the horizontal axis and time flowing down- explore in more detail the dynamics of entangled states
ward. On the left is a history of cell site probability to be in sfdte  pelow. By linearity, using the above BQCA sequence,
and on the right, the reduced von Neumann entropy of each celiny statep, can be swapped through—1 lattice sites
(black=1, white=0). prepared in|0) in a time T,=n/(4g). At the cost of

cell on the left and right at each step. This does not fit intg®"€ additional update on th species, the states of two

the QCA paradigm for two reasons. First, the local rule is no@duPits on the eondnsilofBa cb_alclz canﬁ_b(/ez swapped via
unitary, e.g., both strings “110” and “111” are mapped to the sequence:o,o, "M~(l.e (m2)ox e~ 1(m )U.Xve )
“111.” Second, the applied rule updates all cells simulta-IM (1,6 ("27,e71(72)0x,e717% 172 "as shown in Fig. 2.
neously, not in a block partitioned manner. There are locally The QCA state transport tim&,=n/(4g) is provably
reversible CA rules that spread information at spegg, 18] the minimal time to translate a quantum operator over
(such as rule 150 but is there a unitary BQCA rule that can N—1 sites of a spin chain with pairwise mteractlon's. Thls
saturate the speed limit? The answer is affirmative as igrotocol should be compared to the total propagation time
shown below. using “soliton operators” proposed in Refl9]. There a

We consider am cell register initialized in the state Single-qubit state is encoded into three qubits which then
|1)9®]0);  n_1 With left and right boundary conditions Propagate }hrpugh the chain and are decoded to one qubit at
(3,.=03x=0). The approach is to map the solitary 1 into athe end. Similar to the present proposal, the discrete evolu-
two-cell unit which then propagates 2 sites per updatdion is generated via the Ising interaction punctuated by ho-
and is decoded into a single cell at the other boundarynogeneous single-bit gates. The swapping time using the
The BQCA sequence to achieve this is Soliton operators isTs n=(n+1)w/(4g), slightly longer
oM IM(1,e (72)ox @ i(mDy oI N2 The total time than the present method. Both pulse sequences require ad-
to transport the information over— 1 cells is[from Eq.(6)] dressability at the boun(_iarles but the S|mpl_er QCA sequence
T,=nml(4g)+(n+1)ts, wheret, is the time to implement has the additional requirement of an architecture that sup-

a single-qubit gate. If we assume that single-qubit gates Captorts an alter_nating array of two species. It should be empha-
be implemented on a time scale much faster than the man;?—'zed that neither of these methods are true swap sequences,

body interactiont.</(4g), then the information speed is " the sense that any quantum information encoded in the
c=(n—1)/T=4g(n—1)/(=n). The connection is made to intervening cells will be disturbed during the sequence. They

classical CA's by noting that nontrivial rules use conditional @Y Pe useful in quantum architectures where quantum

bit flips, which according to Eq(6) are implemented in a memory’ IS stored_ |n.q'u.b|t.s spatially separated from each

time t=r/(4g). Thus the maximum speed of information other by “bus” qubits initialized to the stat®) that act as

flow i Coya= LIt =4g/ 7. The encoding and decoding con- conduits for quantum information. Architectures with this
max .

sume a fixed amount of time but in the limit of largec, !(lnd of sparsely dls_trlbuted memory avoid correlated errors
is approached. induced by the environment and can make the system ame-

The state could just as well have begun in a superpositiof22I€ t0 quantum error correction. I
state |¢>o=a|0>o+JB|1>o in which cagse the BQpCAp se- BQCA rules also can readily be constructed to distribute

quence will transport the state to site-1 as shown in Fig. entanglement. Consider the creation of an entangled pair of

: : : bits at the boundaries of an open chain of size4.
1. It does so by first mapping the product state into a two U . o o - ;
particle entangled state. The basis vector with a pair of adja(_:_hoosmg_ boundar_y “condltloszE(—O,ER—O), e begin
ith a single-qubit “seeded” to the superposition state

cent 1’s is shifted two cells per update, and the state i

mapped back to a product state at the other boundary. Tl{ell_\/z),(|_q>'f'|1>) near the middle of the chain with all other
entanglement present during transport is evident from th&PinS initialized to the sta{®) and apply a QCA sequence to
space-time diagrams in Fig. 1. The first diagram shows th&reate the maximally entangled pair descrll:_)ed by the state
probability density for each spin to be in st&d defined by (1142)(10)6®[0)n-1+]1)0® |1)s-1). The particular BQCA
pl(pj):-rr[|1>“<1|pj], wherep; = Trooi(p) is the reduced Seduence and optimal location of the seed spin will depend
state of the spin at siteof the global state. The second ©N the size of the lattica. We choose a convention that this
diagram displays the reduced von Neumann entropy, definegPin beé of theA species and closest to the middle of the
by S(p;) = — Tr(p; In p;). Starting from a pure separable state chain. Forn=4k, ke N, the seed spln |% located gt 5| (:%

and evolving unitarily, the residual mixedness of each spinirand the update sequence is '("97zMB(1,e7!("Dox

the adjacent pair results from mutual entanglement. We '(™29x e=17ox)  [M(1,e” ("/2)ox g7 1(m2)ox g=imoy) k=1
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Pi(p;) S(ps) Choosing other, more complicated, initial states can

allow BQCA generation of many classes of multiparticle

(a) gl \r- --” entanglement. For example, if we fix boundaries at
(2.=032g=0) and initialize the n cell lattice

to |[W=exd—i(m/4)2]Z50}]|0 ... 0), then the resultant

) g state  after =~ one  update by the rule:
E M(1,e | (m4oz @=i(m)o; @=i(72)oz) js  characterized by

v

== many-particle quantum correlations. In fact it is equivalent,

space space up to local unitarians, to the so-called cluster s{2@

FIG. 3. Generating entangled states beginning with a seeded 1

qubit in the superposition state () (|0)+|1)). (a) A maximally NG =~ o' L0).e? 111 13

entangled pair at the boundaries: (2}(|0)o®|0)n_1+]1)0 ¥ ciug 2n/2®a70(| Ja0z " *[1)a), (13

®[1),_1). (b) The n-spin Greenberger-Horne-ZeilingeiGHZ)

state: (142)([0...0+[1...1)). with the conventioro,,=1. These states obtain maximal re-

duced entropy of every spin. Most notably, they have the

M (1, (72oy g=i(7/2)oy g=i(Dy)  Similarly, for n=4k property of maintaining persistency of entanglement between

the remaining set of qubits when some are [o&polarized,
 itmimo® il 2 —imo~ox  Measured, etg. They have exponentlally Iarge Schmidt

Seq“e[‘?(i,z)'ie Tzr(wi;f)zg[M(,li&i,Z)ly 7,7 1727, 71T ] number, namely, any expansion of the state in terms of a

M(1.e *e € x). The sequence works product basis will require at least'2 terms. This is to be

by updating the _Stf/izt‘?o - 010 -0 once with the rule  contrasted with then-spin GHZ state which has Schmidt
M (1,e(m2ox @ i(m2)ox @=1(m/2)oy) = creating a separated number 2.

pair of adjacent spins in the staté). These pairs then
propagate outward under the same rule used to transport
guantum information to the boundaries. An example rior
=14 is shown in Fig. @). The total time to produce an A. Quantifying multispin entanglement
entangled pair at the boundaries is calculated, using Ggs.
and (7) and again assuming, is negligible, to beT,=(4
+n/2)7/(4g). By a similar argument to the optimality of
guantum state transport sequence, the present sequence
distributing entanglement is optimal within the QCA frame-

+2, the seeded spin is located at sif@— 1 and the update

IV. ENTANGLEMENT DYNAMICS

Generally, QCA evolution can take a configuration of
spins prepared in a product state to a number of different
ntangled states. In order to characterize the dynamics of
Wtanglement, it would be helpful to have a single parameter

that quantifies the amount of multiparticle entanglement con-
Sained in a state at any given time step. A good measure of

afo\évjélezsag?r:?;yngg(ﬂ:itéon‘,‘;;]; ?] aigrr?g;?ggxl/gd Fi)r?lr ,Fg?\/:%ntanglement should capture the nonlocal nature of the quan-
P 9 9 ppIng. Rum correlations of the spins and therefore should be a func-

the same architecture under present consideration, it has be h on the state that is nonincreasing, on average, under
shown[3] that a maximally entangled pair can be swapped t%cal operations and classical communication. Because en-

the ends of a spin chain in a timié;= «r/(2g) independenbf tanglement can be shared in different ways by different sub-

the length. The entangled pair could then be used as a r%’ets(parties) of the spins in the lattice, there does not exist a
source to teleport a quantum state from one end of the chai

S . Qngle function that describes multipartite entanglement. For
to the other. Naturally, any protocol to determlmstlca_lly dis- the purposes of this paper we quantify the amount of multi-
tribute quantum states must preserve causality and is fund

mentally limited by thg speed of Ii_ght which enters into the?nl?tlrgdet? égg%ﬁ?ﬁnéimltzxi:ggsﬁg?; aosn pure states qLibits
protocol through classical processing of measurement results
over the length of the chain. n—1

Multiparticle entanglement can be constructed using a R(|¢))=2 1-(1n) >, Tl’[pjz] . (14
slight variation of the sequence for distributing entangled =0
pairs. As above we assume boundary conditicns=0,2 5

=0) with a seeded qubit in the superposition \@)UO) The measur® is linearly related to the purity of the single
+]1)). An n-spin Green berger-Horne-ZeilingeiGHZ) qubits averaged over the lattice and satisfies two important
state (142)(J0...0+|1...1) can be generated as properties. First, &R(|y))<1, whereR(|¢))=0 if and

follows. Forn=4k, ke N, the seed spin is located at site only if [¢) is a product statg, .anﬂ(.| ¥))=1 for some en-
(= 1)}y tangled states. Secorld(y)) is invariant under local unitar-
n/2 and the update sequence i ( z

Si(m12)0y a—i(T2)oy mmimeN 1K Qi _ iansy; .
[M(Le e mI%e TR I Similarly, for n=4k A significant advantage of this function over other pos-
+2, the seeded spin 13 located at site—1 and the update  gjpje measures is that it can be observed in a straightforward
sequence ig' ("D (" \B(1 g 120y g7 (m/2)ox @=1mox)  manner by measurement. This can be done by introducing a
[M(1,e 1(72ox @~ i(72)ox g=imoy 1k An example forn  second, identical 1D lattice and interacting the two lattices,
=14 is shown in Fig. @). The total time for the BQCA bitwise, with a third addressable 1D lattice that can be pre-
sequence i§,=nm/(89). pared and measured. The measurement requires only that
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each lattice be addressable but does not require addressab  (a)  Pi(p;) ®) Pip)) ©) Pip))
ity of cells within the lattice and is described in RE22]. A
deficiency ofR as an entanglement measure is that it cannot
distinguish subglobal entanglement. For example, im=a4
lattice, the product state of two maximally entangled Bell 5
states and the four-spin GHZ state both h&#alues equal

to 1. This should be kept in mind when quantifying the en-
tangling capacity of BQCA rules as is done below. In prin- ¥
ciple, there are other measurements that can be carried ot
over a many spin system to distinguish one type of sharec
entanglement from another.

space

FIG. 4. Evolution of three computational basis states by the rule
M (1,e" 1 (mox @=i(m/2)ox @=i(72)0x) gver an n=10 lattice with
. o boundaries fixed at0). The probability density space-time dia-

B. Generating multispin entanglement grams over one period for the initial states are showa):

In Sec. I, we considered some examples of BQCA ruled10...00, (b) [0 ...03, and(c) |10 ... 03. The evolution of the
that generate and distribute entangled states. In this sectiogfate|0 . .. 0) is trivial. At no time is entanglement generated.
instead of searching for BQCA sequences that generate par-
ticular entangled states, we explore some basic properties @y given time step no more than eight out of ten spins are
the rules themselves by way of two examples. While thes@ntangled with each other.
examples are not intended to simulate any particular physical The entanglement dynamics are dramatically different for
system, they do illustrate some universal behaviors of BQCAhe same system and initial-state evolving under the BQCA
and indicate the computational power of simple rules appliedule M,=M(1,e”'("4ox e~ 1(74)ox @=1(7M7) This rule ro-
over local, in this case three-cell, neighborhoods. tates each spin by half the amount of the rile, however,

It would be beneficial if some predictive statements couldthe quantum dynamics does not follow a simple composition
be made about the behavior of QCA. We know that classicalule, i.e.,M;# (M;)% This is because the underlying Hamil-
cellular automata have the property that a globally reversibléonians that update the states of speéiesdB are noncom-
rules follow closed evolutiof4]. That is, any initial configu- muting so that correlations build up at rates that are not
ration will evolve back to itself after a characteristic period linearly related. The space-time diagrams of probability den-
that depends on the rule and the configuration. The maxisity and reduced entropy plotted in Figbbshow that after
mum period of evolution is the size of the configuration three steps, correlations spread throughout the lattice. No pe-
space, which for an cell lattice with 2 states per cell is'2  riodicity is evident, and after roughly 20 steps, the multiqubit
Linear CA rules are those that satisfy the property that for an
iPitiaIaconfaiguration that is a mixture of two configurations, @ Pi(p;) S(p;) ® p(p;) S(p;)
u=av+bw, wherea,beR, the rule acts linearly on the =
inputs: Mu=aMuo +bMw. If the periods of the configura- e
tionsv andw under ruleM are Ty,(v) and Ty (W), respec-
tively, then the period ofi is Ty (U)=lcm(Ty(v), Tm(W)). ]
For an arbitrary mixture of m configurations, u
=3 awy, the period isTy () =lcm{Ty(vi}).

We consider the BQCA rue  M; ey,
=M(1,e ("2ox @~ (72)ox = I(72)7x) acting on an initial =
—>

oy
I | |
awn

product state of spins with boundaries fixed &t €02 ey
=0). For the computational basis states widh on the in- —
terior qubits and|0) or |1) at the ends, the evolution is e
reversible as shown in Fig. 4. These four initial states have "
characteristic periods 1,11, and 13 and at no time is entangle- ey
ment generated by the rule. If the initial state is chosen as an 2
evenly weighted superposition of these four basis states: ]
|zp(0)>=e’i(”’4)(”(y)+”; l)|0 ...0), then entanglement is
generated by the rule because nonseparable phases accumu-
late on the coevolving basis states. The space-time diagrams g 5 Entanglement dynamics visualized by the space-time
of probability density and reduced entropy are shown in Figjstories of the evolution of a chain of ten spins by two BQCA
5(@). The evolution is periodic with a period given By  ryles. The boundaries are fixed |@ and the initial state is the
=lcm(1,11,13)=143. The multiqubit entanglement during same for both rules with all qubits initialized t9 @xcept for the
the evolution is plotted in Fig. 6. The entanglement neverubits at sites 0 anci—1 each in the superposition state (1/
attains values abovR(|(t)))=0.6, and this is evident in 2)(|0)+|1)). (a) Rule M(1,e~("2ox = 1(7ox @=i(m2)oy) ()

the space-time plot of reduced entropy which shows that aRule M(1,e™ (74ox g=i(7/4ox g=i(m4)ay)

— — —»
space  space space  space
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P w " R0 111 110 101 100 011 010 001 000

0.8}
’ 0 1 1 0 1 1 1 0
;3 o6l ,- which is not one to one because both states 011 and 001 map
= o to 011. As mentioned above, rule 110 is universal and we
g . might expect that for quantum cellular automata there are

o
S

interesting dynamics to be explored when the register is no
longer a closed system obeying unitary dynamics but inter-
0.2 acts with an environment in an irreversible way.
Nonunitary rules correspond to completely positive maps
applied to a system dependent on the state of the neighbor-
20 40 s, 80 100 120 140 hood. A general, completely positive map on a quantum state
p can be written as a superoperator in the Krauss represen-
FIG. 6. Multiqubit entanglement generated during the BQCAtation [23] as S(p)=EfFlFMpFL, where the total number
evolution plotted in Fig. 5. Entanglement of t_he global state is plot-of effects Fu is k and trace preservation of the state is en-
ted for the rulesM(Le ("2 1727 e (707 (triangles  sured by the constraiit’_,F1F,=1. In the QCA context,
andM(L,e” (™97, e (797 e 7H(T7) (boxes. the effects acting on a three-cell neighborhogd-(,j,j
+1) are a sum of actions on qubiinduced by orthogonal
entanglement, plotted in Fig. 6, saturates at a value oftates of the qubits at sit¢s-1 andj + 1. The superoperator
~R(|#(t)))=0.9 with small fluctuations. One way to dis- can be written as the composition
cern whether the rule is generating many different classes of
entangled states during the evolution is to examine temporal S/(p)=5°0S"0S°0S (p), (16)
variation of Schmidt numbers of the stdtg(t)) over the set

of all 2"~1 bipartite divisions of then lattice qubits. The Where

Schmidt numbers are invariant under local unitary operations Kap

and under a bipartite division df and n—k qubits, their s ) =|ab)(abl® fab fabt o 1apyabl. (1
range is the integers in the intervd,min{242" 1], We J(p)=[ab)(abl /;l wpli@lab)abl. (17

have calculated the history of Schmidt numbers over the evo-

lution period and find that the rule generates a large numbéerere, ks, denotes the number of effects that act on the up-

of different classes of entangled states. This demonstratéited qubitj when the neighborhood is in the state

that the ruleM, explores a larger volume of the Hilbert 1ab)j—1j+1. TFe single-qubit superoperators are trace pre-

space of pure states # 5" than does ruléV, for the given ~ serving, i-e-ZMai’lebeZb: 1. As with the unitary maps, the

initial state. mapsS; andS; , , commute, so qubits at every other site can
It is an open question under what BQCA rules and initialbe updated in parallel. We denote a total BQCA update se-

states is the set of states generated during evolution dense gunence from timet to t+1 by p(t+1)=85(p(t))

the Hilbert space of pure states #5". One might expect =S"OSB(p(t)), where

that rules that rotate the updated spins by an angle that is an

irrational multiple of 7 would accomplish this for a large 8M(p)=$08,0 - 0S8 _2(p),
class of initial states. 55(p)=5,08,0- - -OS_1(p). 18
V- NONUNITARY RULES As an example, the CA rule 110 updating the state of a
A. Formulation qubit at sitej is written as
Up to this point we have described how to implement a lelo(p)=Fl(j)pFI(j)vLFz(j)pFZ(j), (19)

class of unitary BQCA rules. In general one would like to

have a prescription for implementingonunitary rules as  where

well. Of the 256 Wolfram rules for radius 1, two-state clas- ) ) ) )

sical CA, only 16 are locally invertible. They are given by ~ F1=[00(00®1'+[10)(10® 1 +|11)(11|® o, +|01)

Uj k1,m=100(00 ® (o)’ +[01)(01 ® (o) +|10)(10) x(01®|1);(1],
® (o) + 1D (1Y@ (o)™, (15 Fb=101)(01®|1);;(0|. (20)

. ) ) The rule can be decomposed into unitary and nonunitary
where{j,k,I,m} €{0,1}. Among classical CA, all the unitary BQCA rules as

rules generate rather simple behavior compared to the com-

plex dynamics generated from some of_ the other, nonuni_tary, lelo(p) - s?l(M(1,1,1,g§()p|\/|(1,1,1,g§'<)), (22)
rules[4]. For example, rule 110 is described by the following

update table: where
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S(p)=101)(0 @ (|1);;(L|p|L);;(1]+]|1);;(0p|0O);;(1 ® @ i)
i (p) | >< | (| >JJ< |P| >JJ< | | >u< |P| )JJ< |) [0 o) ) B o) B EAR TP
®[01)(01)). (220 e[ Joy [ 10y |10y |[Tmo)y | 1) | lwa) |[ lwo) | 10} | [ez)
|o) £2)) |2) |o) |z’1) [a2) |o) |$1) |2)

When the neighborhood is in stat@l), rule 110 has the
effect of an amplitude damping channel on qubii.e., it

FIG. 7. Sequence of steps to implement nonunitary BQCA rules

maps a mixed state to a pure stpl. on a 1D lattices using qubits in a control lattice and an environ-
ment latticee. The lattice cells are assumed addressable along the
B. Simulation vertical but not the horizontal direction with gr@yhite) cells cor-

In this section we demonstrate how to implement nonuni-resloonding 0 qubit species(B). Shown is a sequence sketched

o . - over a three-cell section of the lattices for implementing a nonuni-
tary rules within a QCA architecture. A nonunitary map on a P 9

idi . b o b tary rule onB species qubits dependent on thepecies neighbors.
quantum system residing in a Hilbert spa can be (i). A product state in the computational basisa shown with the

thought Of_ as open sy_stem dynamics that arise from unitanjices c andss initialized to |0). (ii). The state of theA species
operation in the combined spage®®H © of the system and  qupits is fanned out to corresponding siteseiand ¢ using con-
some environment, followed by tracing over the environ-tro epnoT gates. (iii). The unitary BQCA rule
mental degrees of freedom. Any superoperator on a SyStemB(uy,,uy,,uso,Us5) acts onc to activate the controls dependent
of dimensiond can be realized in this fashion with an envi- on the neighborhood. Nonunitary evolution sis simulated using
ronment of dimension at mosf; meaning that the maximal interactions between the lattices, measuremene, and feedback
number of effects in a superoperator expansida=si? [24]. on s. Afterwards, the inverse of stegis) and (iii) disentangles the
Generally, implementing control over a combined systenthree lattices.

and environment of this size is difficult, however, it has beerb impl ted without K led fth i
shown that by using measurement and feedback, a singl € Implemented without knowledge ot the measurement re-
Sult using a controlled-unitary operation betweemnd s,

qubit environment is sufficient to simulate open system dy- = s s :
namics[25]. The simulation works by coupling a single qubit namely, Upp= |O>ee<o|®u0+|¢>ee<1| ®U;. Finally, th‘?

. _ control qubitc needs to be disentangled from the register
e prepared in the stafer )e=(1/12)(|0)e+ 1)) to the sys- "o F oo MS(1,1,e/(™x 1), and the “environment’
tem s via a HamiltonianHgy,= yP® o,, whereP is a pro- " ”

) : ) . qubit reset tg + ).
jector onto a pure state is The corresponding unitary 0p-  Note that this protocol has the unwanted effect of apply-

eration isU(t)=e™ "yt =cos(AP)@1-isin(1P)®a,. By ing a unitaryU,, to the qubits regardless of the state of the
suitable averaging techniques, namely, conjugating shorfyeighhorhood, because the feedback is only conditioned on
time evolutionU (At), whereAt<t, with unitary operations  the environmental state which is initialized [@). This can

on s, the projectorP can be transformed into any positive, pe obviated by instead using the feedback gdts,,

unit trace, operatoP. Finally, e is measured in the, basis  =|0),(0|®15+|1)e(1|®U{SUS, and after the control has
and the result is fed back ®with one of the two unitarians been disentangled fros) applying a unitary BQCA os. For
Uy,U;, depending on the measurement result. This processxample, after the simulation (S?l with the gateU;,, the

will implement any superoperator described by two effectsunitary BQCA ruleM3(1,U,,1,1) will apply the necessary

Fo=U,Cos(tP) andF;=U;sin(3P). Maps with more than feedback. By the superoperator decomposition, ()., any

two effects can be simulated by repeated cycles of measur@onunitary BQCA rule can be implemented by at most four

ment and feedback. instances of the above open systems simulation using the
In the QCA context, we want to activate nonunitary dy- appropriate unitary ruleM® for each neighborhood value

namics on a qubis dependent on the neighborhood state.!25)- Lo . . :
This can be accomplished by first “turning on” a control A POssible implementation of nonunitary BQCA rules is

qubitc dependent on the neighborhood state then implemen2!OWN in Fig. 7 for an architecture with three stacked 1D
ing the unitaryUs_ o= e eceHsyrt during the simula- attices. The protocol for interacting registers in an optical

tion steps described above. For instance, the superoperatlgrttlce 's outlined in Ref[22].

Sgl(p) can be implemented by first entangling the register

and the control qubitinitialized to |0).) with the unitary
BQCA ruleM®(1,1,e~'("7x 1). We choose the projector in We investigate the effect of adding decoherence to a uni-

Hsymto beP=|1).(1| and simulate open system dynamicstary BQCA by mixing the rules R™? and R'®

C. Results

on s by evolving the combined systens,g,s) with the uni-  =M(L,1,1,0}). This is described by a one-parameter map
tary U _ o i(M)oSeote ogi (WAoo oigi(ia)eleos The O the neighborhoodjf-1,,j+1) written as:

c—sym L . i " i i ) )
gate Ucsym can be efficiently implemented using pairwise Sj(p,p)=SJQl(M(1,1,1,0;)pM(1,1,1,0;),p), (23)

interactions between system pairs €) and (,s) [22]. At
the measurement stage, the classical result of the measurghere

ment one should be ignored, equivalent to tracing over the _y; _ —
environmental degrees of freedom. This can be accomodatedslQ (p,p)=[02)(0Y & (([1);(1[+ V1 -pl0);;{ODp(|1);

by an environmental qubit that sinks information of the mea- S {14 V1=pl0%:: (0D +bl1): (0l pl0Y: (1
surement result to a large reservéiuch as an atom that (1l P|0;5¢01) + PIL);j(Olp|0);i(1D
emits spontaneous radiatiorThe conditional feedback can ®|01)(01]). (29
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FIG. 8. System evolution by a mixture of unitary and nonunitary rug%p,p). Results are shown fop=1/2 (boxe$ and p=1
(triangles with connecting lines to guide the ey@ Mixedness of the system(t). (b) Entanglement, quantified as the average tangle
over all spin pairs. Increased coupling to the environment increases the entanglement.

In the casep—0(1), therule approacheR%§R'9). We state of a qubit only if the neighborhood is in the stl&).
study the evolution of entanglement under this map when th&he implementation of this rule requires a three-body inter-
initial state is chosen to be the superposition of all computaaction followed by single-spin decoherence. The net effect is
tional basis state$z/;(0)>=exq—i(w/4)2?’la§]|0). Note  to project the state to one that has some fraction of entangle-
that R1% permutes computational basis states so [tihéd)) ~ ment. This is an example of environment assisted entangle-
is an eigenstate of this rule and no entanglement betweement preparation. Another, well-known, example of such a
spins is generateiHowever, when the system is subjected phenomenon is the relaxation of two independent radiating
to nonunitary rules, entanglement can develop. This behavidgtipoles into a maximally entangled subradiant ste2€]

is illustrated in Fig. 8 for am=6 lattice with boundaries when the dipoles are close enough together to see the same
fixed at ¢, =0,2r=0). Two global quantities of the spin electromagnetic field. The results here show that entangle-
chain are plotted: the mixedness of the state Tt p?], and ment can develop even when the environment acts only on
the entanglement. The entanglement over the multipartitone member of a neighborhood of spins.

mixed statep is calculated by averaging the pairwise tangle It is possible that this effect could be measured in the
7; over all spin pairsi(j). The tangle[26] is a monotonic Iaborator_y as a signature of ne|g_hbor dependent environmen-
function on pure or mixed states of two qubits assuming thdal coupling. For instance, consider an array of three atoms
value 0 for separable states and 1 for maximally entangle@f two speciesA andB trapped inside a higk cavity with

Bell states. It is defined as a function of the reduced gtate orderABAand aligned perpendicular to the cavity axis. The
of qubitsi andj: Tij:[ma)@\l_)\Z_)\S_)M}]zv where\x, are  Species are assumed to have a distinguishable set of two-
the square roots of the eigenvalues, in decreasing order, @round-state manifold®) , g and|1), g with different reso-

pijpi; - Here,p;; is the spin-flipped version of;: p;j=c, Nant excitation frequencies wo ag)=Eear) ~Eoas) and
* ) = - and possi ifferent decay rates

RaypI0y® 0y . fiwiaB)= Eeam) .ElA(B) dp bly_ d ff. t decay rat

As the amount of coupling to the environment, quantified A8 - I a laser f|.eld at fre.quenc.y)L |IIurr.1|nates.aII thrge
by p, increases, the amount of entanglement in the spin chaiﬁtoms’ dipoles will be excited with dominant dipole-dipole

increases. Additionally, beyond a certain time, the mixednes{/l€ractionsVyq acting pairwise. Assume thab, is ex-
fremely far-off resonant to thf), g—|€)a g transition so

decreases with increasing coupling. This latter fact is be- divol ited onlv wh f both )
cause rule 110 acts as a neighborhood dependent Amplitut{igat Ipoles are ?XC'te only when gtoms of both species are
state|1). The interactions will shift the energy levels of

damping channel that decreases the reduced entropy of ea . hat the effective d . f the field
spin state. In fact, fop=1 the state of the system relaxes 1€ WO species so that the efiective detunings of the fie

after a timet=4 to dynamics with period 6 and constant Wil P& Ag=w —wi5=2Vya/h and Ap=w —w;a
mixedness. For the mixed rule cages 1/2, in contrast, the —Vyq/h. For Vg large enough and appropriate choice of

system is not driven to periodic evolution but on Iong-timeIaser frequencylAg|< yg while [A,|> y, so that the field is

scales experiences small fluctuation in mixedness and e} 'ésonance with the excited state of atBbut not for the
tanglement. A species. If the resonant-cavity frequency is closetg,

The development of entanglement during open system d);_hen theB species atom will preferentially decay to state

namics, absent in the closed system dynamics can be attril2)s 'BThiS type of decay corresponds to the nonunitary rule

— 11, B B B
uted to the fact that the nonunitary rule acts to dampen the=9xSgs (0xP0ox,P)oy, in analogy to Eq.(24). The
strength ofVy4 will determine the amount of coupling

'Becauser, ¢ SU(2), rule 108 is not strictly within the class of VI. CONCLUSIONS
implementable BQCA rules in 1D. However, one can use the rule
M(1,1,1,e'("2x) instead and correct for the phase using a con- In this paper, we have shown how to construct a universal
trolled phase gate in the nonunitary implementation stage. class of radius-1, two-state QCA that are block partitioned
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and particularly suited for implementation in systems with ation. On a more fundamental level, the nonunitary BQCA
naturally endowed lattice-type structure. In Sec. Il A we in-can be used as a test bed for exploring the interplay between
troduced a universal set of BQCA rules in Ed), which is  quantum and classical computation—between quantum and
the formal analog of the subset of 16 unitary rules of Wol-classical correlations in a discrete dynamical system. As a
fram’s 256 radius-one rules for classical CA. We demon-concrete example exploring this notion, in Sec. V we pre-
strated how these general rules can be simulated in a spffnted simulation results of a nonunitary BQCA rule that can
lattice with Ising interactions in conjunction with single- P€ tuned continuously from a purely open irreversible evo-
qubit rotations(applied in parallel across the lattic@his s !ution using rule 110(implemented in a block partitioned

an important result showing the physical relevance of thdn@nney to a purely closed unitary evolution using the quan-
BQCA to experimental systems. tum analog of rule 108. Remarkably, we uncovered the in-

Another important result is that we have suggested aﬁriguing result that for a particular initial-state entanglement
alternative approach to quantum computation: use BQCA t _e_neratlon IS optlmlzed by tning the mixing parameter toa
explore the raw computational properties of a physical Sys_mlte value, which suggests the possibility of environment

tem, such as the transport of quantum information and th@sﬁiited entanglerTl]ent genedr_atior_w. di CA th
generation of long-range quantum correlations throughout e are several outstanding issues regarding QCA that

the system. This approach should be viewed as complemeH‘fa”ant future research. Can QCA be used to simulate com-

tary to the standard treatment of quantum-information proP!€X classical or quantum dynamics? The study of QLG al-

cessing centered around the quantum circuit model of QC. “gorlt_hms demqnstrates t_hat thefe are nontrivial (_:Iassm_al dy-
Sec. Ill we presented several specific examples of ho amics of a single particle which can be studied using a

BQCA rules can be chosen to distribute specialized en_attice of spins. In these algorithms, the entanglement gener-

tangled states across the lattice, for example, to create ﬁe.d i?’ typic'ally.limited to local neighborhoods. It is worth-
n-spin GHZ state, shown in Fig.(). In order to visualize while investigating whether large scale global entanglement

the development and spread of entanglement, we have intrg€nerated by QCA can be used to advantage, perhaps to
study properties of classical CA with quantum parallelism.

duced the idea of plotting a space-time diagram of the re= o .

duced entropy at each cell. We then explored more generd}'S© the preliminary study of nonunitary QCA here suggests

entanglement dynamics in Sec. IV, with a focus on findingt at in some cases open system Qynamlcs may be a more

rules that are effective at generating multiqubit entangle-eff!Clent way 1o navigate th_rough Hilbert space than purely

ment. For this task, we utilized the multiqubit entanglemen nitary o_lynam|cs. For practical |mplementat|on_ one wonders

measureR(| ¢)) related to the average purity of the constitu- ow resilient QCA are to decoherence and noise in the con-

ent qubits. trol fields. Work on decoherence free subspd&H#sS) shows .
Perhaps our most innovative contribution to the study oiihat when a group of quantum systems see the same environ-

QCA is that we have developed the formalism in Sec. V thafnent that the noise can protected against by careful encoding

extends BQCA to open quantum systems, which evolve ac(_)f the state$28]. Because cellular automata evolve by use of

cording tononunitaryrules. The BQCA rulé is represented global control fields the requirements for DFS are natural to

by an appropriate set of Krauss operators acting on the sy§hls architecture.

tem density matrix. This more generalized treatment can be ACKNOWLEDGMENTS
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